

StarMDCKTM

Serum-free Cell Culture Medium

--- For Vaccine Production

StarMDCKTM is a serum-free cell culture medium designed for suspension culture of MDCK cells and contains L-Glutamine. This medium supports the production of influenza vaccine.

Application

StarMDCK[™] is intended for large scale manufacturing of therapeutic biomolecules, as well as for research purposes, but not for human or any therapeutic use.

Storage & Transportation

Store at 2~8°C, dark and dry Ship at Room temperature (Liquid), Blue ice (Dry powder)

Cell Culture Conditions

37℃, 5~8%CO₂

Cell Recovery

- 1. Rapidly thaw (<2 min) a vial of frozen cells in a 37 °C water bath.
- 2. Transfer the entire contents aseptically into a 125 mL shake flask containing 30 mL prewarmed StarMDCK[™] cell culture medium.
- 3. Incubate at 37 °C in a humidified atmosphere of 5%~8% CO_2 in air on a shaker (rotating at 110~130 rpm (amplitude: 50mm).
- 4. Passage the cells for at least twice until fully recovery. Proceed according normal procedure after the Population Doubling Time stays stable.

Cell Culture Passaging

- 1. Prewarm StarMDCK[™] cell culture medium at 37 °C for 20~30min.
- 2. Proceed if VCD $\geq 1 \times 10^6$ /mL & viability $\geq 90\%$. Cultures should be passaged during the mid-log phase.
- 3. Determine the correct volume of cell culture to inoculate a new flask at a starting cell density of 0.5×10⁶ cells/mL in prewarmed StarMDCK[™] cell culture medium
- 4. Incubate flasks in a humidified 37 °C incubator with 5%~8% CO₂ on an orbital shaker at 110~150rpm (amplitude: 50mm).
- 5. Passage cells by repeating the above steps every 2~3 days.

Medium Adaptation

Direct Medium Adaptation

- 1. Cell lines may be adapted directly from serum-free media into StarMDCK[™] cell culture medium. The seeding cell density can be referred to the passaging instructions or should be determined individually.
- 2. Cells should be passaged for a few times.
- 3. Adaptation is completed when the cultures attain stable VCD of 2×10^6 /mL and viability $\ge 90\%$ within $3\sim 4$ days over at least $2\sim 3$ passages.

Sequential Medium Adaptation

1. For certain cell lines cultured in serum-free media, or in presence of 5~10% serum, sequential

Shelf Life

StarMDCK[™] Medium Liquid: 12 months StarMDCK[™] Dry Powder: 24 months

adaptation method is recommended.

- 2. Monitor the cell growth until the cell density has reached $\geq 2 \times 10^{6}$ cells/mL.
- 3. Dilute the cells with a ratio of 25:75 (StarMDCK[™] vs current medium), and then further dilute the culture until the cells grow well under this condition. Increase the proportion of StarMDCK[™] in each subsequent operation, as is shown in the table.
- 4. Adaptation is completed when the cultures in 100% StarMDCK[™] Cell culture medium attain stable VCD of 2×10⁶/mL and viability ≥ 85% within 3~4 days over at least 2~3 passages.

StarMDCK™: current medium (%)	Seeding density (×10⁵ cells/mL)	Evaluation of cell growth	Acceptance criteria for next step
25 : 75	3 ~ 4	VCD & Viability	VCD≥2×10°/mL, Viability≥90% over 2 passages
50 : 50	3~4	VCD & Viability	VCD≥2×10 ⁶ /mL, Viability≥90% over 2 passages
75 : 25	3~4	VCD & Viability	VCD≥2×10 ⁶ /mL, Viability≥90% over 2 passages
90 : 10	3~4	VCD & Viability	VCD≥2×10°/mL, Viability≥90% over 2 passages
100 : 0	3~4	VCD & Viability	VCD≥2×10°/mL, Viability≥90% over 2 passages

Cryopreservation

- 1. Harvest the desired quantity of cells in mid-log phase of growth with viability over 90%.
- 2. Determine VCD to ensure that the final cell density is $> 1 \times 10^7$ /ml.
- 3. Prepare the freezing medium consisting of 90% StarMDCK[™] Cell culture medium and 10% dimethyl sulfoxide (DMSO). Let the freezing medium cool down to 4°C.
- 4. Harvest cells by centrifugation at 400xg for 5 minutes. Remove the supernatant and resuspend the cell pellet with the cold freezing medium at $> 1 \times 10^{7}$ /ml.
- 5. Transfer the suspension to sterile cryo-vials.
- 6. Place the vials in a cryo-box or a controlled rate freezing apparatus following standard procedures (1°C decrease per minute).
- 7. For long-term storage, transfer the vials to liquid nitrogen.

Order Information

Cell Culture Media

Name	Cat No.	Туре	Volume
StarMDCK [™] DPM	C230221	Dry powder	50L/100L
StarMDCK [™] Medium	C230289	Liquid	1000mL

Shanghai OPM Biosciences Co., Ltd.

OPM Headquarter: Building #28, 908 Ziping Road, Pudong, Shanghai, China

+86 021-6818 2622 service@opmbiosciences.com www.opmbio.com